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    Abstract-A technique using a plane temperature sensor
array to dynamically image the transient temperature response
of the human skin subject to intentionally applied heating or
cooling was proposed. A human disease diagnostic system with
satisfactory accuracy and rapid response speed was constructed.
Preliminary experiments show the potential clinical application
of this device, which is simple to fabricate and thus cheap in
price. Further theoretical analysis shows that the surface heat
flux may serve as a better thermal index for disease diagnostics
than the commonly used surface temperature, due to that it
included all the thermal contributions from any abnormal
tissues underneath the skin. An approach was proposed to
measure the skin surface heat flux using the currently
constructed temperature sensor array system.
    Keywords-thermal diagnostic bioheat transfer, 
imaging system temperature sensor array
noninvasive monitoring, thermal diagnostics index

I. INTRODUCTION

      It has long been revealed that the body surface
temperature is controlled by the blood circulation underneath
the skin, the local metabolism, and the heat exchange
between the skin and the environment [1-6]. Changes in any
of these parameters can induce variations of temperature and
heat flux at the skin surface, reflecting the physiological state
of human body. For example [1], a highly vascularized skin
tumor can lead to an increase of local blood flow and thus the
skin temperature. Inflammation induced high metabolic rate
can also increase the skin temperature. On the other hand,
thrombosis or vascular sclerosis in the peripheral circulation
decreases the blood flowing to the skin resulting in low skin
temperature. Apparently, the abnormal temperature or heat
flux at the skin surface indicates irregular peripheral
circulation, which can be used in the clinical diagnosis.
Unlike detection using radiation and isotope marker, thermal
diagnostics does no hurt to the human body and thus becomes
gradually popular. The high-resolution thermography of the
skin surface has been proved to be an effective diagnostic
tool [1]-[6]. However, most of the previous efforts are
focused on the steady state diagnostics, which may loose
valuable disease information. A critical step to improve the
thermal diagnostic efficiency is through dynamic imaging.
     Up to now, several thermal imaging methods have been
established to diagnose the human body [5], [6]. The most
commonly used approach is through infrared thermometry
based on measuring the thermal radiation from the objects.
Compared with the non-invasive diagnostics like nuclear
magnetic resonance, microwave and ultrasound [5], infrared
thermometer appears more simple and safer. However,
running the infrared thermometer requires additional

equipment such as cooling system so as to obtain high quality
image and work safely. Due to the difficulty in calibrating the
temperature sensor, extending the working temperature range
of this device is not easy. The complicated methodology also
makes the infrared thermometer very expensive, which may
limit its widespread applications. Further, the imaging of this
device is easily subject to the external factors such as the air
flow, the emissivity of skin etc, which will affect the reading
and thus the interpretation of the obtained data. To avoid
influence from the surrounding environment, directly
measuring the surface temperature may provide more reliable
information. People also applied microwave to image the
temperature map of the skin surface. But there is defect in its
temperature measuring resolution and the response speed.
This device is also very expensive. Apart from the above two
kinds of devices, the liquid crystal thermometer has also been
tried to image the temperature distribution on the skin surface
[6]. This device is simple in operation and cheap in price. A
major drawback is its poor quantification on the temperature
magnitude and relying too much on the operator's judgement.
Its temperature measurement range is small. Particularly, it is
hard to use this method to dynamically monitor the transient
temperature of the skin surface. All these situations limit the
application of the liquid crystal thermometer for the disease
diagnostics.
      In this paper, a dynamic diagnostic system using
temperature sensor array to directly image the skin surface
temperature is proposed, which is simple in structure and
cheap in price. It can be used as either steady state or
transient imaging. The thermal couple sensor with wide
temperature measurement range has high accuracy and quick
response speed. It thus satisfies closely the requirement of the
thermal diagnostics. Finally, the paper will also discuss the
thermal index most appropriate for the disease detection.

II SYSTEM CONSTRUCTION

     As schematically shown in Fig.1, the present imaging
system is mainly consisted of the plane temperature sensor
array, the data acquisition system, and the computer etc. The
thermoelectric cooling device made of Peliter elements was
used to apply heating or cooling due to its good flexibility.
The temperature information was recorded and stored in the
computer and then displayed as topography image using
software. As clinically revealed, when the human body is
subjected to a heating or cooling, it will induce different
temperature response for the tissues, healthy or diseased, or
with various vascular structures. Previously, few attentions
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had been paid to the dynamic diagnostics. The present method will be beneficial for such clinical practice.

Fig.1.   Signal flow chart

      As shown in Fig.2(a), the T-type thermal couples were
used as the temperature sensors and arranged in square array.
The adiabatic base made of glass fiber reinforced plastics was
uniformly drilled with microscale holes with diameter of
about 100 m at the prescribed positions. The thermal
couples were sealed at these positions and exposed to the skin
surface to map its temperature distribution. The down-lead
wires of the thermal couples were guided out through the
bottom of the base and then packaged using the substrate
made of organic glass (Fig.2(b)). In this way, a temperature
sensor array was constructed. According to the area of the to
be measured skin surface, different sizes for the array plate
can be designed. And the distance between each thermal
couple can be regulated at will and 6mm was used in the

present system. Further, the amount of the thermal couples
can also be determined as required. However, confined by the
channels of the current data acquisition system, 6×6=36
thermocouples were used in this study. Their coordinates
were stored in the computer. Once the temperatures at these
positions were recorded using data acquisition system (USA,
Agilent 34970A), the two-dimensional temperature
topography for the skin surface can be displayed. Comparing
this image with that of the normal skin surface, one can
evaluate whether the detected tissue is healthy or abnormal.
This system is capable of in-situ imaging the transient
temperature of the skin surface, which will provide valuable
information for detecting the human disease. 

                           (a) Temperature sensor array                                                             (b)  Cross-section

Fig.2. Construction of  the temperature sensor array

III. PRELIMINARY EXPERIMENTAL RESULTS

      To calibrate the temperature sensor array, all the hot and
cold ends of the thermal couples were immersed in the ice-
water mixture. Then the deviation between each other was
determined and the systematic error can thus be eliminated
before the measurement.
     When performing the steady state diagnostics, closely
contact the sensor array to the skin surface. Then the two-

dimensional temperature information on the skin surface can
be mapped. If for a dynamic diagnostics, the skin surface
should be subjected to a specific heating or cooling before
imaging the temperature.
      As a preliminary investigation, we performed
experiments on the surface of human forearm with
underneath large blood vessel transversing. Before the
imaging, this skin surface was cooled using a 6cm×6cm×3cm
aluminum plate pre-cooled by ice water mixture. After about
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20 seconds, the cooling plate was moved away. And the
sensor array was contacted to the forearm to map its transient
temperature response of the skin surface. Fig.3 depicts the
corresponding spatial temperature profiles for two human
forearm surfaces at two different times. The irregularity of
the temperature distribution is quite evident which is mainly
caused by the blood flow in large vessels. This is because the
convective heat transfer by the flowing blood and the heat
conduction by the tissue is different in strength, which will
result in different temperature response on skin surface when
subject to cooling. Generally, for the healthy human body,
the non-homogeneity of the skin surface temperature is
mainly determined by the blood flowing in the vessel. Given
the small magnitude of the temperature difference, high-
resolution thermal sensors are required for this application.
      It has long been revealed that existence of the malignant
tumor often leads to very different skin surface temperature

response. The metabolic rate in the tumor site often appears
abnormally high.  Comprehensive analysis on the irregularity
of the abnormal thermal states of the skin surface will be
beneficial for the disease diagnostics. An atlas database needs
to be set up and an expert software system need to be
developed to help to judge when the temperature mapping
stands for disease. Clinical experiments need to be performed
to investigate the most effective heating (or cooling) and
imaging algorithms for the disease detection. Clearly,
dynamic diagnostics will provide more information than the
steady state one. Based on different thermal signals
intentionally applied on the skin surface of human body, the
transient temperature response can possibly be correlated
with the disease. All these problems need further
investigations.

                                                           (a)                                                                                                       (b)

Fig.3.   Temperature maps for two human forearms at two time intervals

IV. DISCUSSION

     For the disease diagnostics via thermal approach, the most
commonly used index is the skin surface temperature, which
can be non-invasively recorded by the infrared thermometer
or the present system. However, this information is not
always useful. As a common experience for the clinician, the
temperature mapping on the skin surface can not always
reflect the right disease symptom. This is because the surface
temperature is overall a contribution from all the physical or
physiological behaviors inside the living tissues. In other
words, the same surface temperature may represent different
states of the biological bodies. Many factors such as tissue
density, specific heat, heat conductivity, blood perfusion,
metabolism etc. all affect the output of the skin surface
temperature. So, even the diseased tissue has abnormal heat
generation, it does not necessarily result in an irregular
surface temperature increase, since other factors may
possibly level off the contribution from such disease factors.
For these reasons, finding a more suitable index for thermally
diagnosing the human disease is still very necessary. As will

be shown later, the heat flux is just one of such candidates,
which can provide more complete information for the
diagnostics than that of the surface temperature. This
conclusion was drawn from the following analysis.
     The well known Pennes’ equation reflecting heat transfer
in the skin tissue reads as [7]:    

     ( ) ( )( ) , , ,b b b a m

T
c k T c T T q x y z t

t
ρ ω ρ∂

= ∇ ⋅ ∇ + − +
∂

      (1)

where, ρ , c, and k denote density, specific heat and thermal

conductivity of tissue; bρ , bc  are density, specific heat of

blood; bω  blood perfusion rate; mq  metabolic heat

generation; aT  the supplying arterial blood temperature and

T  the tissue temperature.
      Equation (1) can be written as:

( )* , , ,x y z m

T T T T
c k k k q x y z t

t x x y y z z
ρ

     ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂     

              

                                                                                             (2)
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where, ( ) ( ) ( )* , , , , , , , , ,m b b b a mq x y z t c T T x y z t q x y z tω ρ= − +    can

be regarded as a local apparent metabolic heat generation,
which comprehensively reflects the thermal contribution
from the tissues. If tissue appears as either diseased or

healthy, it will results in the alternation of the ( )* , , ,mq x y z t .

Thus if certain index capable of reflecting this behavior can
be found and non-invasively recorded, it will be very useful
for the thermal diagnostics. This index is proved to be the
skin surface heat flux. 
     For simplicity, the one-dimensional problem was analyzed
which is

        ( )* ,x m

T T
c k q x t

t x x
ρ ∂ ∂ ∂ = + ∂ ∂ ∂ 

                         (3)

     Integrating this equation from the skin surface (x=0) to the
body core (x=L) leads to

    ( )*

0 0 0
dx dx , dx

L L L

x m

T T
c k q x t

t x x
ρ ∂ ∂ ∂    = +    ∂ ∂ ∂    ∫ ∫ ∫    (4)

At the steady state, the above equation leads to

             ( )*

0
0

0 , dx
L

x x m
x L x

T T
k k q x t

x x= =

∂ ∂
= − +

∂ ∂ ∫           (5)

Considering that at the deep biological body, the temperature
becomes uniform due to self regulation of the human body,
the temperature gradient at the core position tends to be zero,

i.e. 0
x L

T

x =

∂
=

∂
. Then (5) can be written as:

                     ( )*

0
0

, dx
L

x m
x

T
q k q x t

x =

∂
= =

∂ ∫                       (6)

which means that the total heat generation inside the
biological body contributes to the skin surface heat flux.
Clearly, any abnormal internal thermal behavior will be
reflected by the skin surface heat flux. Thus compared to the
temperature information, the surface heat flux is more
appropriate in serving as the right tool for diagnosing the
disease. To measure this surface heat flux, a highly
conductive material such as copper or aluminum plate
embedded with heating wires can be sandwiched between the
substrate and the base. Due to with high conductivity, the
temperature over this whole plate surface is almost the same,
thus only a thermocouple needs to be fixed on the surface of

this layer to measure its temperature 0T . Once the skin

surface temperatures iT  (at position of the ith couple) were

recorded, the skin surface heat flux at position of the ith

couple can be obtained as 0i
i b

T T
q k

x

−
=

∆
  (where bk  and

x∆  are heat conductivity and thickness of the base,
respectively)  based  on  Fourier's law. In this way,  a  surface

heat flux sensor array can be set up. For diagnostic purpose, a
database of surface temperature and heat flux corresponding
to different thermal states of biological bodies need to be
established in the near future.

V. CONCLUSION

     In this paper, a highly economic imaging system for
thermal disease diagnostics using temperature sensor array
was proposed which may replace the infrared thermometer in
some degree. This system is quick in response and accurate
in the temperature measurement. It can be used in a wide
variety of temperatures. The device is a kind of simple
diagnostics system with low price and high performance as
well as good flexibility. Preliminary experiments show the
promising future of this system to the thermal imaging of
human body. From a theoretical analysis, it was still found
that the surface heat flux appeared more appropriate for
disease diagnostics than the surface temperature. All these
efforts guarantee further investigation in this area using the
present  method to detect the human disease. And the sensor
array system to measure the surface heat flux needs to be
developed.
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